Extensions 1→N→G→Q→1 with N=C22 and Q=Dic21

Direct product G=N×Q with N=C22 and Q=Dic21
dρLabelID
C22×Dic21336C2^2xDic21336,202

Semidirect products G=N:Q with N=C22 and Q=Dic21
extensionφ:Q→Aut NdρLabelID
C22⋊Dic21 = A4⋊Dic7φ: Dic21/C14S3 ⊆ Aut C22846-C2^2:Dic21336,120
C222Dic21 = C42.38D4φ: Dic21/C42C2 ⊆ Aut C22168C2^2:2Dic21336,105

Non-split extensions G=N.Q with N=C22 and Q=Dic21
extensionφ:Q→Aut NdρLabelID
C22.Dic21 = C84.C4φ: Dic21/C42C2 ⊆ Aut C221682C2^2.Dic21336,96
C22.2Dic21 = C2×C21⋊C8central extension (φ=1)336C2^2.2Dic21336,95

׿
×
𝔽